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Pitch

Systemic risk, such as M.bovis or COVID-19, do great 
harm to the New Zealand economy. Artificial intelligence 
(AI) can identify such risks earlier and facilitate quicker 
responses and better outcomes. We present a novel, 
state-of-the-art method for systemic risk detection based 
on AI. Development and deployment of this method 
could save the New Zealand economy hundreds of 
millions of dollars over the next decade.

Foreword

Systemic risks are potential trigger events or 
developments that could undermine the viability 
of entire networks or systems. Examples include 
contagious food diseases and the bankruptcy of 
keystone companies. Systemic risks are likely to 
happen more frequently going forward, as markets 
(e.g. financial) are becoming increasingly complex and 
opaque, technological change is accelerating at an 
unprecedent rate and the global political situation is 
becoming more unstable.

These same fundamental changes to the way the 
world operates mean it is becoming more difficult to 
anticipate and deal with risks when they do occur. This 
is in large part because the systems we need to protect 
are becoming more complex, and so their fragility/ 
resilience to shocks are becoming harder to gauge.

The tools available to researchers, regulators and 
companies for detecting and governing systemic risk 
have not kept pace with these challenges. Traditional 
methods are generally periodic assessments. These are 
too intermittent, too slow and too narrow in focus for 
timely systemic risk detection.

We present a framework for detecting systemic risk 
using artificial intelligence (AI) in this paper to address 

these shortcomings. An AI based system could assess 
systemic risk in an automated, continuous, and 
comprehensive manner with greater vigilance and 
reliability than current methods. This would provide 
regulators and companies in production networks with 
earlier warning signals of a wider range of systemic risks 
on the one hand, and more up-to-date measures of the 
fragility/resilience of the system against these risks on 
the other hand.

To illustrate the value, we discuss how such an 
framework would work when it is applied to biosecurity 
related threats and risks, such as mycoplasma bovis 
(M.bovis). The spread of the M. bovis bacterium 
has resulted in an ongoing, established and major 
biosecurity incursion affecting the New Zealand dairy 
industry. A framework such as the one proposed here 
could assist with the early detection of an incursion like 
M. bovis, or help to mitigate the damage.

While we focus in the latter part of the paper one 
specific type of risk (biosecurity hazards) in one specific 
type of production network (agrifood), the fundamentals 
and principles on which our framework is based are 
applicable to a wide range of risks and contexts (e.g., the 
detection of systemic risk within the financial services 
industry).

What is systemic risk?

Systemic risks are potential trigger events or 
developments that could severely disrupt or even do 
unrepairable damage to a network [5, 14]. This network 
can be an individual industry, a sector, or even the 
economy as a whole. Furthermore, systemic risks are 
not limited to the economic domain, as their occurrence 
may impact the environment, the political system and 
other spheres of society [8, 13].

Systemic risks are often characterized by failures at 
critical nodes in a network [22].  In networks that are 
vulnerable to systemic risk, such failures can cause 
rippling effects across the network [6, 24]. In a financial 
context, for example, if inter-bank loans don’t get repaid 
and investors fear other bankruptcies, the bankruptcy of 
a large and well-connected bank may cause other banks 
to go bankrupt as well [1, 2].

Systemic risks tend to occur more frequently, and 
with more severe consequences, in networks that are 
complex and dynamic [3]. Many social and economic 
networks fall into this category (e.g., cities, markets), 
as do, for example, many biological networks (e.g. reef 
ecosystems) [4]. 

In such networks, the relationships and interactions 
between the different elements of the network are 
often unclear and unstable [5, 6]. This makes it difficult 
for observes to understand what internally generated 
systemic risks may be lurking within the network, also 
difficult to understand how the network will respond to 
externally systemic risk.” 
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Why is systemic risk so hard to deal 
with?

Risk management complications

Risk-managers usually have a host of difficulties in 
complex and dynamic networks, including problems 
with deciding:  

• What techniques and models to use to assess the 
risks to which a network is exposed

• What scenarios to develop and test

• What data and data sources to use as input for 
model and scenario building

• How to generate or access this data in a timely 
fashion. 

Difficulties arises for various reasons [5, 7, 8]:

• Key information about the network and its 
constituent components may be missing or out-of-
date (as it describes the network in previous states, 
while it has already shifted to a new state)

• The nature of the systemic risks to which the 
network is exposed may be unknown

• The conditions, or state of the network, that 
increase the likelihood of a systemic risk occurring 
are not well understood

• The impact of a systemic event is generally very 
difficult to estimate, even in the case of well-known 
risks (e.g., it is difficult to forecast all possible ways 
in which climate change will impact economic 
performance).

• The effect of proposed or planned interventions in 
the network are difficult to predict. 

Companies, policy-makers, and citizen/voters face 
various disincentives and biases against investing in 
systemic risk management activities [9, 10, 11]. As 
a result, societies also tend to commit insufficient 
resources to undertaking them [12, 13].

“Our horizon goes no further 
than the next election”.

“We are more concerned 
with our wellbeing, than 

with that of future 
generations”.

“Risks and costs that 
cannot be easily 

quanti�ed, can be more 
easily shifted towards 

the future”.

“We assume, in our 
forecasting models, that 

the future is largely 
similar to the past”.

“We are concerned with 
maximising the 

(short-term) pro�ts of 
our �rm, not with 
minimising risks 

a�ecting the business 
network”.

“We are not hard-wired to 
understand complex, social 

systems (e.g.: we have 
di�culty in integrating and 
decomposing information 
about networks and their 
constituent elements)”.

“We are more concerned 
with our wellbeing in the 

present, than with our 
wellbeing in the future”.

“We intend to free-ride, and 
rely on other �rms to pay 

for the costs of making our 
supply chain more resilient 

against systemic risk”.
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Can Artificial Intelligence help?

Artificial intelligence (AI) can play an important role 
in helping human decision makers, such as risk 
managers/analysts, deal with systemic risk earlier 
and more effectively [14, 15]. How? By helping them 
overcome some of the difficulties they have in timely 
becoming aware of and understanding changes in 
complex systems.

Bene�ts for detection and management of systemic risk

∙  Wider range of early warning signals
∙  Prompt analysis of warning signals ▹ more time to respond

∙  Continuous assessment of more system failure points / system resilience
∙  Continuously updated assessments of potential systemic risk impacts

∙  Risk and resilience monitoring and impact assessment ▹ action prioritisation recommendations

Machine learning principles and data 
mining algorithms enhances the ability 
of analysts to identify subtle patterns 
and relationships in the system [18].

Combination of automatic data 
collection and machine learning speeds 
up the process by which models of the 
system can be developed, tested and 

modi ed.  This increases system 
modelling capacity dramatically.

Natural language processing, video and 
imaging processing, speech to voice 

algorithms, and automatic data 
collection and curation, enables analysts 

to e�ciently dissect vast and more 
varied data sets [16 ,17].

Benefits for detection and management of systemic risk
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E N G I N E

Regulation analysis

Network analysis

Transaction analysis

Statistical analysis

Sentiment analysis

Expert judgement

Institutional analysis

Multi-agent analysis

instructions to help our algorithms identify key 
agents, processes and interactions at different 
levels of the network.

• An important limitation of many approaches to 
the study of systemic risk is that they often rely 
on a limited range of techniques and data sets [3, 
14]. However, to be able to understand complex 
systems, a wide range of techniques and data sets 
is necessary, and a lot of thinking is required in 
order to make these different techniques work well 
together.  This, in order to be able to take a look 
at the system from many different angles and to 
develop a varied of scenarios about how the system 
may evolve [7, 19].” 

Stand-alone techniques may have their uses 
for generating a model about the system, for 
anticipating a risk or making a prediction, or 
for helping us understand a part of the system. 
However, with complex and dynamic systems, we 
need multiple models, anticipate various risks, 
and understand the system as a whole. With such 
systems, often a multitude of futures is equally 
plausible [5, 7]. 

To be able to anticipate these futures, also a 
multitude of different methods and techniques 
is required. For that reason, we will use in our 
approach a range of different types of methods to 
identify early warning signals of risks at the one 
hand, and the fragility of the network against these 
risks at the other hand.

What will we do differently?

• AI is more central to our approach than in existing 
approaches [14]. This would allow us to deal with 
far more diverse and larger data sets, which help 
us in turn to detect a wider range of potential early 
warning signals of systemic risk. 

While we could deal with far larger data sets, we 
would nonetheless be better able to differentiate 
warning signals of risk from noise. This is because 
we use and combine a wider set of complementary 
methods and tools to analyse that data [19, 20].  “If 
you search for a needle in haystack with your bare 
hands, a single haystack looks large. When you use 
a metal-detector and magnifying glasses, you could 
find the needle in 10 haystacks”.  

• Our approach would offer a more continuous 
assessment of the state of the system or network in 
question. While most approaches acknowledge the 
dynamic nature of the networks in which systemic  
risks arise, they nonetheless tend to offer largely 
periodic assessments [19, 21, 22]. In our approach, 
which would be more automated and in which data 
would be assessed from a much wider range of 
sources, our algorithms would continuously scan 
for patterns or changes in either the network, or its 
external environment.

• Our approach relies neither on ad-hoc selected 
indicators nor on a large unified theory to assess 
the network, but on various small-scale models 
working together as a “system of models” [3, 6, 20]. 
This helps us to give more specific and practical 
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Our approach

Our approach in six steps:

1. Conceptualize the system as a set of partially 
overlapping production networks

2. Identify the industries that are central to the 
functioning of the system

3. Identify key agents, institutions and processes 
within these industries

4. Search for indicators within these industries that 
could indicate the onset of known systemic risks

5. Undertake horizon scans to identify early warning 
signals of black swans (“unimaginable” systemic 
risks)

6. Assess the ability of the industries to withstand, 
recover and adapt to these risks. [4, 5, 23]

(For the sake of simplicity, the six steps are outlined in 
a sequential manner. However, they are in fact largely 
iterative and parallel processes, where also the “later” 
processes inform the “earlier” ones. For example, the 
extent to which a production network is able to withstand 
an bankruptcy of a keystone company (step 6), partially 
helps to determine the amount of resources that should 
be allocated to searching for (additional) indicators of this 
risk (step 4).)

Cattle 
Meat

BioeconomyLamb 
Meat

Apple

Kiwi
Dairy

Small CompanySmall Industry

Large CompanyLarge Industry

Step 1 

Conceptualise an economy or sector as 
a set of overlapping industries

Step 2 

Does the industry pose a systemic risk 
to the economy in case it fails or goes 

into decline?

Step 3 

If this company fails or goes into 
decline, can the other companies in the 
industry still thrive or at least survive?
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Steps 1-3:  Identify systemically important industries within the larger economic network, as well as keystone 
companies those industries.
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E N G I N E

4A  Sentiment Analysis

e.g.: tracking changes in the number of online 
search queries about known biosecurity incursions.

4B  Institutional Analysis

e.g.: analysing the databases of regulators for gaps 
and inconsistencies in their data about farmers’ 
degree of compliance with biosecurity standards.

4C  Transaction Analysis

e.g.: monitoring transaction databases for behaviour
that is consistent with known prior instances of 

biosecurity related fraud.

4D  Report Output

e.g.: the report may: (1), highlight a speci�c 
information gap which could indicate that there 

could be biosecurity incursions that the institution 
would be unaware of; and (2), show that there is, 

however, no evidence that such incursions are 
taking place; and (3) recommend collection of 

speci�c data to monitor the speci�c risks.

Step 4:  Detect early warning signals of known systemic risks affecting keystone industries and companies

Step 5:  Undertake horizon scans to detect ‘black swans’ earlier

E N G I N E

5A  Expert Judgement

Identi�cation of “Cassandras”, and the processing 
and curating of their messages, via our “10th man” 
expert identi�cation and assessment algorithms.

5B  Policy / Regulatory Analysis

The identi�cation of possible policy or regulatory 
changes before they have been implemented, for 

example by mining political debates. 

5C  Transaction Analysis

Scanning for changes in contract terms and 
conditions (e.g., value of obligations, quality of 
collateral, duration etc), for example by mining 

prospectuses

Report Output

e.g.: the report can give an overview of: (1), potential 
black swans, as identi�ed by experts; (2), indicators 

for such events (as developed through our  
multi-agent simulation); (3), the state of the system, 

as signalled through these indicators.

5D Multi-Agent Simulation Output

Our policy analysis, expert judgement analysis and 
transaction analysis will be used as input for the  
multi-agent simulation. What are the long-term 

implications of current contract terms on agents’  
behaviour? How are agents likely to respond to 
policy changes? Under what conditions will the 

simulation “spit out” scenarios that are consistent 
with the warning scenarios identi�ed by the 

“Cassandras”?

5D Multi-Agent Simulation

The simulation will give as output a range of 
scenarios illustrating how agents are likely to adapt 

their behaviour over times as result of regulatory 
changes and changes in contract conditions. 

Furthermore, by scanning and analysing the “bad 
case” scenarios for communalities, indicators of 

possible black swans can be inductively developed. 
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Step 6:  Assess the robustness, resilience and adaptive capabilities of keystone industries and companies

Low Complexity

High Complexity
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Would industry be able to withstand 
the known systemic risks and black 

swans identi�ed in the earlier steps?

How quickly would the industry 
recover if one (or more) of these 

events were to occur?

Could the industry adapt to new 
circumstances after the event 

(if necessary)?

Applying our approach - selected case 
studies

At present, we are further developing and applying 
our approach in a specific context: the detection and 
assessment of potential biosecurity incursions affecting 
the New Zealand agri-food sector. This includes:

• An assessment of the structural robustness/fragility 
of the production networks that make up the 
New Zealand agri-food sector against biosecurity 
incursions.

• An evaluation of data, systems and approaches 
used by key agents (e.g., large companies, well-
connected companies, as well as the suppliers of 
such companies) and institutions (e.g., regulators) 
to prevent such incursions.

• The detection of anomalies in the behavior of the 
companies within the sector that may indicate 
the onset or outbreak of an incursion affecting 
human, animal or plant health. The focus here lies 
predominantly on identifying anomalies within 
the social aspects of the system rather than the 
biophysical aspects (for example, by monitoring 
for suspicious behavior of companies, by scanning 
for experts that give unheeded warning of possible 
incursions, etc.). That is, the focus lies mainly on 
identifying anomalies that suggest companies 
are taking advantage from structural fragility in 
the network or from monitoring failures at the 
institutional level.

Initially, we are developing the AI engine specifically for 
the detection of biosecurity hazards within the context 
of the pastoral industries. Subsequently, we will start the 
process of adapting and “training” the algorithms for 
the detection of biosecurity hazards within other parts 
of the agri-food sector as well.

More broadly, our approach, which is predominantly 
concerned with identifying frictions and cracks in the 
system that are caused by human and institutional 
failures, should also be applicable to the detection and 
assessment of other types of risks, and within other types 
of contexts, than biosecurity hazards within the agri-food 
sector. 

The principles-based nature of our approach will allow us 
to, over time and with effort, also adapt the algorithms 
to a more diverse set of contexts (e.g., the detection of 
systemic risk within the financial services industry).
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Assessing network fragility to biosecurity incursions by 
means of Artificial Intelligence

The AI engine will monitor for changes in the structure 
of food production networks, especially looking for: 
(1), changes in the structure that make it more difficult 
to detect biosecurity incursions; and (2), changes in 
the structure that will increase the rate or speed of 
transmission of an incursion if one were to occur. 
In general, these are changes that make the network 
supporting the physical flows of products, services 
or interactions amongst the agents more densely 
connected, more complex and more homogenous [6, 
24], and changes that make the network supporting the 
flows of information amongst the agents less connected 
and more opaque [25].

For example, a denser physical network means that 
an incursion will spread more easily across agents. 
Particular concerns in this context include: an increase 
in the size of potential “super-spreaders” (larger nodes 
at central points in the network, such as larger traders 
and other intermediaries), better connected “super-
spreaders” (e.g., traders that cover a larger geographical 
area, that connect a wider range of farmers to a wider 
range of processing companies or locations, etc.), 
more linkages across previously isolated hubs (e.g., 
more trading between intermediaries, for example for 
inventory management purposes), etc.

Assessing 
network 
fragility

Governance 
evaluation

Anomaly 
Detection

Multi-agent simulation to model the 
various states to which the network 
is likely to evolve from based on its 
current structure

Automatic extraction and processing of 
information from transaction databases, 

commercial registrations and legal proceedings 
about the business relationships within the 
network, by means of an intelligent crawler

Assessment of the structure and distribution 
of relationships within the network by means 

of cluster detection algorithms (based on 
the information extracted by the crawler)
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Detecting biosecurity related fraud through Artificial 
Intelligence

* For example, we will try to detect anomalies in 
the behavior of potential super-spreaders that are 
suggestive of biosecurity incursions, as well as in 
the behavior of the agents that form part of the hub 
surrounding such key nodes.

We will use pattern recognition algorithms to determine 
whether any anomalies that have been detected in such 

Automated real-time data 
collection of online searches, 

farmer discussion fora, etc.

Knowledge graph of farmers’ 
search engine trend data

Automated detection of import of 
dual- or multi-use materials, for 
example based on customs data

Detection of suspect patterns of  
online behaviour, for example by 
means of deep learning neural 
networks

Assessing 
network 
fragilityAnomaly 

Detection

Governance 
evaluation

*

hubs by the lower-level algorithms are just random 
noise, or a potential indication of a biosecurity incursion 
that should be taken seriously and investigated further.

Because we will pool and analyze data from a 
wide range of data sources, both structured and 
unstructured, we will be able to detect patterns that 
would be missed by more traditional approaches.

When events or patterns are detected that pass a certain 
predefined trigger or threshold, the users of our system 
will receive an automatic alert. This alert will be in 
the form of a multi-layered report, where the user can 
drill-down to obtain more details about the event that 
triggered the alert.

Assessing 
network 
fragility

Governance 
evaluation

Anomaly 
Detection

Warning Signals

Anomaly 
detection

Network 
fragility

Risk-management 
failures
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Identifying biosecurity hazards earlier than through machine learning

Grapevine
Concern with topics discussed

Farmer Forums, social media 

∙   Increase in direct chatter 
about bio-hazard

∙   Increase in indirect chatter 
about bio-hazard (questions 
about inputs to combat 
hazard 

Expert Opinions
Concern with topics discussed

Opinion articles, scienti�c forums 

∙   Identify outlying opinions 
about views on risk

∙   Monitor changes in % of 
experts supporting outlying 
opinion

Farm System
Concern with deviations from 

regular business practices  

Heard and farm 
management records 

∙   Change in number of animals 
held on farm

∙   Input / Output mismatches

Market / Transaction system
Concern with irregular trading 

patterns in the following 
transactions: (a) farmer-farmers; (b) 
farmer-processor; (c) farmer-trader)

A collated/integrated database 
based on price information from 

across the supply chain 

∙   Loss-making transactions
∙   Out-of-season transactions
∙   Abnormal volumes

Governance System
Concern with (a),changes in rules 

and enforcement by regulators; (b) 
extent and manner in which industry 
actors attempt to avoid compliance. 

National animal 
traceability scheme 

∙   Movement and 
non-movement of animals

∙   Fines given

Network Structure
Concern with structural changes 
that increase contact between 

nodes, or that increase circulation 
of inputs/outputs

Companies register

∙   Increases in number of 
intermediaries

∙   Increased concentration of 
central nodes

∙   Increased in number of 
boundary spanners

Risk mgmt 
e�orts 

Anomalies 
detected 

Network 
Fragility

E N G I N E

(a) (b)

(c) (d)

(e)

System and concerns 

Sources of information 

Examples of signals 
monitored in each system 

KEY 

Connection supporting Information: 

(a)  Farmer ID, number of animals, 
size of farm (hectares)

(b)  Land-rental leases (to check for 
leases without recorded animal 
movement), prices, volumes

(c)  Farmer ID, number of animals
(d)  Tracking company ID, processor 

ID
(e)   Trade �ows between nodes in 

network
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Final thoughts

All of the major systemic risks in recent times, whether 
it is the 2007-2008 sub-prime crisis or COVID-19, gave 
off early warning signals. Those signals were not picked 
up by most regulators and keystone companies in a 
timely manner, often leading to delayed and insufficient 
responses. This, in turn, has cost the world economy 
hundreds of billions of dollars. 

An early warning system powered by artificial  
intelligence (AI), such as the one we have presented 
in this paper, can help to greatly mitigate systemic 
risks. How? An AI based system could assist regulators 
and other types of stakeholders in scanning for risk in 
a more continuous, automated and comprehensive 
manner, amongst others by:

• Making it time- and cost-efficient for regulators 
to gather and process a wide-range of data points 
about social and other types of systems, through 
natural language processing algorithms, computer 
vision and voice recognition. For example, in the 
context of financial risk, this would allow regulators 
to rapidly analyze thousands of prospectuses and 
contracts in order to spot changes in the quality of 
the securities that are floated in the primary market.

• Greatly enhancing the ability of regulators to 
identify non-obvious patterns and relationships 
in such systems, by means of machine learning 
principles and algorithms more generally. For 
example, with regard to biosecurity fraud, this 
would help regulators to better identify suspicious 
transactions, such as an unexpected increase in 
chemical purchases in a certain agricultural region.

• Drastically speeding-up the process by which new 
models about the functioning of such systems 
can be developed, tested and adjusted (through 
a combination of automated data collection and 
machine learning). For example, in the context of 
the outbreak of a contagious virus, this would help 
health boards to quickly test the accuracy of existing 
epidemiological models against the latest data 
about the spread of the virus.

The assistance that our system could provide would 
help regulators to:

1. Monitor a much wider range of potential early 
warning signals of systemic risk;

2. Identify actual warning signals significantly earlier;

3. Provide more up-to-date measures of the fragility of 
the system against these risks.

In more plain English, it would give regulators an 
opportunity at an early stage to nip potential systemic 
risks in the bud or to limit or mitigate effects if 
preventive action is not (fully) successful.

The costs of developing an early warning system are 
negligible compared to the potential cost savings that 
could be obtained by being better prepared against large 
scale, harmful events such as M.bovis or COVID-19. 
These types of events are unlikely to stop occurring over 
the coming decade.

If anything, we will likely see more large-scale crises 
going forward, as countries are becoming ever more 
connected and depended on each other. As a result, 
disruptions in supply chains are more likely to have 
cross-border effects, biosecurity threats and contagious 
diseases are more likely to spread across continents, 
and problems in a domestic financial market are more 
likely have implications for the global economy.

Faced with this uncertain future, investing in the 
development of a more sophisticated early warning 
system is about as safe a bet as they come.
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